23 research outputs found

    Dominating sequences in grid-like and toroidal graphs

    Get PDF
    A longest sequence SS of distinct vertices of a graph GG such that each vertex of SS dominates some vertex that is not dominated by its preceding vertices, is called a Grundy dominating sequence; the length of SS is the Grundy domination number of GG. In this paper we study the Grundy domination number in the four standard graph products: the Cartesian, the lexicographic, the direct, and the strong product. For each of the products we present a lower bound for the Grundy domination number which turns out to be exact for the lexicographic product and is conjectured to be exact for the strong product. In most of the cases exact Grundy domination numbers are determined for products of paths and/or cycles.Comment: 17 pages 3 figure

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta

    Grundy dominating sequences and zero forcing sets

    Get PDF
    In a graph GG a sequence v1,v2,…,vmv_1,v_2,\dots,v_m of vertices is Grundy dominating if for all 2≤i≤m2\le i \le m we have N[vi]⊈∪j=1i−1N[vj]N[v_i]\not\subseteq \cup_{j=1}^{i-1}N[v_j] and is Grundy total dominating if for all 2≤i≤m2\le i \le m we have N(vi)⊈∪j=1i−1N(vj)N(v_i)\not\subseteq \cup_{j=1}^{i-1}N(v_j). The length of the longest Grundy (total) dominating sequence has been studied by several authors. In this paper we introduce two similar concepts when the requirement on the neighborhoods is changed to N(vi)⊈∪j=1i−1N[vj]N(v_i)\not\subseteq \cup_{j=1}^{i-1}N[v_j] or N[vi]⊈∪j=1i−1N(vj)N[v_i]\not\subseteq \cup_{j=1}^{i-1}N(v_j). In the former case we establish a strong connection to the zero forcing number of a graph, while we determine the complexity of the decision problem in the latter case. We also study the relationships among the four concepts, and discuss their computational complexities

    Toll convexity

    Get PDF
    A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In the resulting interval convexity, a set S ⊂ V(G) is toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled walk between x and y is also in S. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski-Krein-Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.Facultad de Ciencias Exacta
    corecore